References

[AdFM+21]

Christiane Adcock, Marc Henry de Frahan, Jeremy Melvin, Ganesh Vijayakumar, Gianluca Iaccarino, Robert Moser, and Michael Sprague. Sst k-omega simulations of the atmospheric boundary layer including the coriolis effect. APS DFD, 2021.

[Aft94]

M. Aftosmis. Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA Journal, 32(2):268–277, 1994.

[Bau11]

Mary C. Bautista. Turbulence modelling of the atmospheric boundary layer over complex topography. PhD thesis, École de Technologie Supérieure Université du Québec, Montreal, CA, October 2011.

[BDM15]

Mary C. Bautista, Louis Dufresne, and Christian Masson. Hybrid turbulence models for atmospheric flow; a proper comparison with rans models. E3S Web of Conferences, 2015. URL: https://www.e3s-conferences.org/articles/e3sconf/abs/2015/01/e3sconf_sowe2014_03001/e3sconf_sowe2014_03001.html.

[Chi82]

Kuei-Yuan Chien. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA journal, 20(1):33–38, 1982.

[CLM+12]

M. J. Churchfield, S. Lee, P. K. Moriarty, L. A. Martinez, S. Leonardi, G. Vijayakumar, and J. G. Brasseur. A large-eddy simulatiion of wind-plant aerodynamics. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 9–12 Jan. 2012.

[Dav97]

L. Davidson. Large-eddy simulations: a note on the derivation of the equations for the subgrid turbulent kintic energies. Technical Report, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, 1997.

[Dom06]

S. Domino. Towards verification of formal time accuracy for a family of approximate projection methods using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2006.

[Dom08]

S. Domino. A comparison of various equal-order interpolation methodologies using the method of manufactured solutions. In Center for Turbulence Research Summer Proceedings. 2008.

[Dom10]

S. Domino. Towards verification of sliding mesh algorithms for complex applications using mms. In Center for Turbulence Research Summer Proceedings. 2010.

[Dom14]

S. Domino. A comparison between low order and higher order low mach discretization approaches. In Center for Turbulence Research Summer Proceedings. 2014.

[DNP98]

F. Ducors, F. Nicoud, and T. Poinsot. Wall-adapting local eddy-viscosity models for simulations in complex geometries. In International Conference on Computational Conference, volume 50. 1998.

[Dye74]

A. J. Dyer. A review of flux-profile relationships. Boundary-Layer Meteorology, 7:363–372, 1974.

[EWS+10]

H. Edwards, A. Williams, G. Sjaardema, D. Baur, and W. Cochran. Sierra toolkit computational mesh computational model. Technical Report SAND-20101192, Sandia National Laboratories, Albuquerque, NM, 2010.

[G03]

Tucker P. G. Differential equation-based wall distance computation for DES and RANS. Journal of Computational Physics, 190(1):229–248, September 2003. URL: https://doi.org/10.1016/S0021-9991(03)00272-9.

[HOM20]

S. Haering, T. Oliver, and R. Moser. Active model split hybrid RANS/LES. Journal of Fluid Mechanics, 2020. Submitted. URL: http://arxiv.org/abs/2006.13118.

[HOM19]

Sigfried Haering, Todd Oliver, and Robert D. Moser. Towards a Predictive Hybrid RANS/LES Framework, chapter, pages. AIAA, 2019. URL: https://arc.aiaa.org/doi/abs/10.2514/6.2019-0087, arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0087, doi:10.2514/6.2019-0087.

[HBH+03]

M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, J. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams. An overview of trilinos. Technical Report SAND-20032927, Sandia National Laboratories, Albuquerque, NM, 2003.

[Jas96]

H. Jasek. Error analysis and estimation for the finite volume menthod with applications to fluid flow. In Ph.D. Thesis, Imperial College. 1996.

[KV93]

Y. Kallinderis and P. Vijayan. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA Journal, 31(8):1440–1447, 1993.

[KB89]

Y. G. Kallinderis and J. R. Baron. Adaptive methods for a new navier-stokes algorithm. AIAA Journal, 27(1):37–43, 1989.

[KP02]

Joseph Katz and Allen Plotkin. Low Speed Aerodynamics. Cambridge University Press, second edition, 2002.

[Kob13]

Tilman Koblitz. CFD modeling of non-neutral atmospheric boundary layer conditions. PhD thesis, Technical University of Denmark, Roskilde, Denmark, July 2013.

[Mar05]

M. Martinez. Comparison of galerkin and control volume finite element for advection-diffusion problems. Int. J. Num. Meth. Fluids, 50(3):347–376, 2005.

[MartinezT17]

Luis A Martínez-Tossas. Large Eddy Simulations and Theoretical Analysis of Wind Turbine Aerodynamics Using an Actuator Line Model. PhD thesis, Johns Hopkins University, Baltimore, MD USA, July 2017.

[Mav00]

D. J. Mavriplis. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. International Journal for Numerical Methods in Fluids, 34(2):93–111, 2000.

[MKL03]

F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with the sst turbulence model. Turb, Heat and Mass Trans, 2003.

[MSLA15]

F. R. Menter, Smirnov, P. E., T Liu, and R. Avancha. A one-equation local correlation-based transition model. Flow Turbulence Combust, 2015.

[Pao82]

S. Paolucci. On the filtering of sound waves from the navier-stokes equations. Technical Report SAND-828257, Sandia National Laboratories, Livermore, CA, December 1982.

[RB78]

R. G. Rehm and H. R. Baum. The equations of motion for thermally driven buoyant flows. Journal of Research of the National Bureau of Standards, 83:279, 1978.

[RM84]

R. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16:99–137, 1984.

[SR87]

G. Schneider and M. Raw. Control volume finite element method for heat transfer and fluid flow using colocated variables - 1. computational procedure. Numerial Heat Transfer, 11(4):363–390, 1987.

[SHZ91]

F. Shakib, T. J. R. Hughes, and J. Zdenek. A new finite element formulation for computational fluids dynamics: the compressible euler and navier stokes equations. Comp. Meth. in App. Mech and Engr., 89:141–219, 1991.

[SR07]

P. R. Spalart and C. L. Rumsey. Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA Journal, 45:2544–2553, 2007.

[SorensenS02]

Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, 124(2):393–399, 05 2002. URL: http://dx.doi.org/10.1115/1.1471361.

[Tea16]

SIERRA Thermal/Fluid Development Team. Sierra low mach module: fuego theory manual - version 4.42. Technical Report SAND2016-10163, Sandia National Laboratories, October 2016.

[TDB05]

S. Tieszen, S. Domino, and A. Black. Validation of a simple turbulence model suitable for closure of temporally-filtered navier-stokes equations using a helium plume. Technical Report SAND-20053210, Sandia National Laboratories, Albuquerque, NM, June 2005.

[W+98]

David C Wilcox and others. Turbulence modeling for CFD. Volume 2. DCW industries La Canada, CA, 1998.